
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LVIII
No. 2/2006 61 - 66 Seria

Matematică - Informatică - Fizică

Multi-dimensional Access and Storage Methods
for Multimedia Data

Monica Vlădoiu, Cătălina Negoiţă

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Informatică
e-mail: mvladoiu@upg-ploiesti.ro

Abstract

Most multimedia data have to be seen from multiple points of view – for instance, the three coordinates x,
y, z, and the time component. These n-dimensional data require special access and indexing techniques. It
is obvious that multi-attribute searches can be performed, but the need for performance call for multi-
dimensional indexes such as: k-d trees, multi-dimensional tries structures, grid files, point quad trees, MX
quad trees, R trees, multi-key hash tables and iverted indices. Stored object clustering is another way of
improving retrieval performance.

Key words: multimedia data, multi-dimensional access methods and indices, clustering

Introduction

A true multimedia revolution is in evolution. Fast developments both in hardware and software,
elements that are specific to user productivity, and the use of complex graphic interface support
it constantly. Moreover, the business environments that could use multimedia need to consider
how important is to have the users pleased with them. The quality of service parameters
measure both the functionality of system components and the performances of multimedia
elements. Mainly, those refer to time constraints, that are critical in multimedia application.

Most multimedia data have to be seen from multiple points of view – for instance, the three
coordinates x, y, z, and the time component. These n-dimensional data require special access and
indexing techniques. It is obvious that multi-attribute searches can be performed, but the need
for performance call for multi-dimensional indexes such as: k-d trees, multi-dimensional tries
structures, grid files, point quad trees, MX quad trees, R trees, multi-key hash tables and iverted
indices. Stored object clustering is another way of improving retrieval performance.

k-d Trees

k-d trees are multi-dimensional search binary trees. Each node from such a tree is a structure
with two data fields, two pointers and a label. On each level of this tree the discrimination is
performed upon a single attribute. The partitioning of the search space according to various
attributes is done alternatively for each attribute from the n-dimensional space. Every node from
the same level has the same discriminator (the partitioning attribute of the object space). For
k=1 one gets an ordinary search binary tree.

62 Monica Vlădoiu, Cătălina Negoiţă

Given a node P of the k-d tree and assuming that the discriminator for the level that corresponds
to it is the attribute A, and the value of A in P is KA(P), then all the descendants of the node P
can be partitioned in two sub-spaces. In the first one, the records with the values of the attribute
A lower than KA(P) can be found. Within the second one, the records that have the value of the
attribute A upper than KA(P) are distributed. The search algorithm is based on the same
principle as the one for ordinary search binary trees.

Multi-dimensional Tries Structures

Multi-dimensional tries structures are similar to k-d trees, except that they divide object space.
Each time when a partitioning is produced, a hypercube 2-split is produced as well, by selecting
a dividing attribute. Due to the data independence of these structures, they are often
unballanced. As a result, the response time can be longer for some queries. The search
mechanism is basically the one from the k-d trees, only the space partitioning is unequal.

Grid Files

One of the simplest and the most popular access method to multi-dimensional points is fixed
grid. This divides the n-dimensional object hyperspace in equal-sized groups. The grid is
implemented with n-dimensional vector. The points that belong to a cell can be interlinked into
a dynamic list. The structure of this kind of grid is rigid and its directory can be rare and large.

Grid file can be used for better performance. It performs better for retrievals that are based on
partial or exact matches. The object space is partitioned in this case too. The grid contains two
parts: a directory (each entry points to a data bucket) and a set of linear scales (n simple
vectors). These scales are used to identify the index from the grid directory, which refers to the
respective group of data.

The purpose of using grid files is to get only two disk accesses, one to get the directory entry
and the other one to determinate the group of data that corresponds to the desired record.

Point Quad Trees

Both in k-d trees and tries structures the number of levels can become very large. Of course, for
external storage support, one can use pointer groups to the data from the leaves. But to find the
needed record, the search in a leave group is done linearly in most of the cases. Consequently,
the search can become prohibitive.

Point quad trees are somehow similar to multi-branch B tree. The approach consists in data-
driven partitioning of object space in several quadrants and to execute multi-key comparisons
on each tree level. Each node from such a tree partitions the object space in K quadrants. In a bi-
dimensional space, a node divides the space in four quadrants: northeast, northwest, southwest,
and southeast. The search procedure is recursive for each quadrant.

MX-quad Trees

Both in k-d trees and point quad trees, the form of the tree depends on the object insertion order.
The purpose of MX-quad trees is to ensure independence both from the number of nodes from
the tree and from the insertion order. Briefly, these trees work this way: firstly, one assumes that
the space is divided in a grid with (2k x 2k) cells, with k given (k is the responsibility of the

 Multi-dimensional Access and Storage Methods for Multimedia Data 63

application developer, its value is supposed to reflect the desired granularity; once it is chosen,
its value is fixed). The node structure is similar with the point quad one.

PR-quad trees are a variant of MX-quad. They differ though by the fact that splitting is done
only if the node contains at least 2 points – so the data are stored right within the node, not on
the leaves.

R Trees

R trees are an interesting access data structure, which confers considerable advantages to spatial
queries. They are similar to the ones for single simple-key searches in B trees. Thus, R trees can
be seen as a generalization on a higher dimension of B trees. These trees are used to store
rectangular regions (in the n-dimensional space) from a media object. A particular kind of R
trees is the bi-dimensional one that contains rectangular regions from a spatial database.

Within R trees each leave contains either grouped objects, either entries [r,<RID>], where r is
an n-dimensional region, and <RID> is an identifier of a media entity (which can consists from,
for example, a pointer to a page and a entry in that page). The root and the intermediary nodes
of an R tree contain entries that have the form [r,<pointer to page>], where the pointer refers a
page from the secondary memory.

Each R tree has an associated order (whole number), may it be K. Each node, except for leaves,
contains a set with at most K rectangles and at least ⎡K/2⎤ rectangles (possibly excluding the
root). Intuitively, this request says that each intermediary node must be at least half-full. This
property makes R trees very appropriate for disk-based retrieval due to the fact that each disk
access will bring into memory at least K/2 rectangles. Moreover, by storing many rectangles on
a page, the height of the R tree that is used for the storage of the rectangle collection is usually
quite small (compared to k-d or quad trees, which manipulate rectangular data).

A rectangle can be simple or compound from many sub-rectangles. On the leaves one can find
simple rectangles, while compound rectangles can be found on intermediary nodes.

The insertion of a new rectangle in an R tree is performed as it follows: firstly, it is analyzed
which of the root associated rectangles need to be least extended (in terms of the covered aria)
to incorporate the rectangle to be inserted. Then, if there is enough room, the new rectangle is
inserted. Otherwise, the node will split, by respecting the principle of getting a minimum area
for the two rectangles. The deletion of a node must ensure that the nodes will not be filled under
the minimum of ⎡K/2⎤. This is guaranteed also by re-distribution of rectangles, so that groups of
minim area to be obtained.

Multi-key Hash Tables

Additionally to the associative retrieval structures, a number of multi-key hash tables try to offer
constant time (O(1) for the exact-matching searches that involve many attributes). One possible
strategy is to hash each attribute of a multi-key object and then to map the obtained n-
dimensional values in a page or group.

There are also more flexible variants as the extensible multi-key hash strategies. This can be
done by obtaining the bit string that corresponds to the hash index by merging the hash values
(which are also bit string) that match up each attribute value.

64 Monica Vlădoiu, Cătălina Negoiţă

Inverted Indexes

The access and indexing structures that are presented above are used for associative retrieval
(attribute based). But in MM applications an important part refers to content based retrievals. Of
course the precedent multi-key spatial structures can be used to implement, for instance, content
based retrieval for objects that have diverse spatial relations. There are though applications,
which involve content retrieval in which multimedia objects are represented as a collection of
keys or terms in the respective field.

Examples of objects for which content retrieval is a necessity are: scanned documents, various
application files, text files and even text files in databases. The goal is the same as before:
improving of reply time for queries, which this time implies predicates on the content of
multimedia objects.

The inverted indices are the most used structures with this aim. In their simplest form they
associate a set of objects or document identifiers with a term or keyword. The identifier can
belong to the document or it can identify an object and an attribute of this.

An entry in an index file looks like that: [<Term>,{<DocumentID>}]. It results that all the
documents in the set contain the respective term. So the retrievals will be made efficiently, with
the trade off of a bigger storage space.

To generate answers that are ordered after their relevance for the query, weights are used (e. g.
the frequency of term occurrence in the document). These can be also stored in the inverted
index, along with the positions of the term occurrences and with other information that refer to
links between the document and the indexing term.

The inverted indices can be implemented as B trees or as hash tables.

The signature indexes are another way of indexing media objects – they are based on
construction of a signature that correspond to all the relevant terms from the documents and on
their storage in files. Each signature will have an associated list of documents that have the
same value for it.

Object Clustering

Object clustering is a storage space organization technique that aims to improve the answer time
for complex objects’ retrieval. The idea is to place objects in pages so that for a given
application the number of page missing errors to be minim. Computationally, this problem is a
NP complex. Due to that, various heuristics to calculate approximations of optimal placement of
objects in pages have been developed.

Obviously, to reduce the number of disk accesses to pages on storage support, in a page one
must find as many related objects as possible. The multimedia objects involve very complex
hierarchies that contain complex objects (e. g. the CAD composition hierarchies, multimedia
annotation hierarchies, graphic object levels, bitmaps from GIS applications, compound
documents that contain various media objects etc.).

Beside time economy, the clustering decrease the need for swapping pages from buffers to disk
in the demand paging technique for memory administration, due to the decreasing of the number
of missing page error. Also the buffer space will be better used, which in multimedia objects
case is a supplementary benefit.

The clustering strategies from multimedia database management systems are sequence-based
because they transform the object in a linear sequence of objects. The core idea is simple:

 Multi-dimensional Access and Storage Methods for Multimedia Data 65

firstly, a clustering sequence is obtained from all the objects in the object base, then these
objects are placed in pages according with this sequence.

Can be presented possible approaches to get a clustering sequence for an object base. A 2-step
generic algorithm can describe them as follows: in a first step, the objects to be clustered will be
sorted by using a pre-sorting method. In the second stage the sequence is traversed with a
traversal method, which is parameterized by the first unvisited object of the input sequence.
This traversal will get to each object, which is reachable from that first object. The process
repeats itself till every object from the object base is visited. In the resulted clustering sequence,
the objects appear in the order of the visiting of the traversal method. Often the objects are
stored directly in the moment of their access, so the storage and the traversal are actually mixed.

To get a good clustering sequence, the traversal component has to have an access manner
similar to the current application.

Comparisons and Conclusions

The point quad trees are very easy to implement. Generally, such a tree with k nodes can have
height k, which leads to an O(k) complexity, both for insertion and search. Furthermore, each
comparison needs two coordinates to be compared, instead of one. The deletion in these trees is
difficult because it is hard to find a candidate to replace the deleted node. The range queries in
quad trees are in O(2n1/2).

k-d trees are also easy to implement. Also, in a k-d tree with k nodes, the height can be k as well.
In practice, the paths from root to leaves tend to be longer than the ones from point quad trees
because a k-d node can have only two children. Worst-case complexity is O(k*n1-1/k). For k=2, it
becomes O(2n1/2).

The average search time in multi-dimensional tries structures is O(log n), where n is the number
of records. In the worst case the search complexity is O(h), where h is the structure height.

For the grid files the search time is good – for exact matches, two accesses are performed: one
to the directory and one to the desired data. The rare nature of the directory can lead to
problems: the hypercubes can have very few records (or not at all), or adjacent directory entries
can point to the same block of data. The implications refer to the range queries and the partial-
match ones, for which many directory entries must be scanned, but very few data blocks.

The MX quad trees have a guaranteed height of maximum O(n), in the case of a region being
represented as composed by 2n * 2n cells. Consequently, insertion, deletion and search are in
O(n). Range queries are very efficient, in O(n+2h), where n is the number of points from the
query answer, and h is the tree height.

The same holds for R trees. Furthermore, because these have a large number of rectangles
potentially stored in each node, they are very appropriate for reducing the number of disk
accesses, provided that the tree height is kept low. this is the explanation of the large-scale use
of R trees.

The same effect can be obtained in the quad trees if the nodes are grouped. A shortcoming of R
trees is that the bounding rectangles that are associated with various nodes can overlap.
As a result, instead of following one search path, many such paths must be pursued. The number
of disk accesses increases. The problem is more serious for range searches for the
nearest neighbor.

In commercial applications R trees are preferred due to their advantages that regard disk
accesses. The number of those is critical for media data in most of the applications. Similar
results can be acquired for quad trees if more articles are grouped, or for MX trees if the indexes
are small.

66 Monica Vlădoiu, Cătălina Negoiţă

One of the problems with inverted indexes is that they easily become very big. They can reach
up to 50% of the original document size (or even more). Their main advantage is that
manipulating only the index gets the query answer. One significant improvement, which can be
made for them, is a natural language interface from which relevant words can be extracted, in
order to conjunction them. The signature files need far less space than inverted indices, but
involve complicate mathematical operations for solving the queries.

Clustering of the stored objects is another way of improving retrieval performance, especially
when it is combined with multi-dimensional indexing techniques.

References

1 . A i z a w a K . , N a k a m u r a Y . - Advances in Multimedia Information Processing, PCM
2004: 5th Pacific Rim Conference on Multimedia Proceedings, in Lecture Notes in Computer
Science, Springer, 2005

2 . C a n d a n K . S . , C e l e n t a n o A . - Advances in Multimedia Information Systems, 11th
International Workshop MIS 2005 Proceedings, in Lecture Notes in Computer Science series,
Springer, 2005

3. F u r h t B . - Multimedia Technologies and Applications for the 21st Century, Kluwer Academic
Publishers, 1998

4 . H i r z a l l a N . B . , K a r m o u c h A . - A multimedia query specification language, in Nwosu
K., Thuraisingham B., Bruce Berra P., Multimedia Database Systems, Design and Implementation
Strategies, Kluwer Academic Publishers, 1996

5 . K h o s h a f i a n , S . - Multimedia and Imaging Databases, Morgan Kaufmann, 1995
6. L e e K . , L e e Y . K . , B e r r a P . B . - Management of Multi-structured Hypermedia

Documents: A Data Model, Query Language, and Indexing Scheme, in Multimedia Database
Management System - Research, Issues and Future Directions, Vol. 4, No.2, Kluwer Academic
Publishers, 1997

7 . R o y o J . D . , H a s e g a w a G . - Management of Multimedia Networks and Services, 8th
International Conference on Management of Multimedia Networks and Services, MMNS 2005,
Barcelona, Lecture Notes in Computer Science Publisher, Springer, 2005

8 . S u b r a h m a n i a n V . S . - Principles of multimedia Database Systems, Morgan Kaufmann Pub.
Inc., San Francisco, CA, 1998

9 . Y u C . T . , M e n g W . - Principles of Database query processing for advanced applications,
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1998

1 0 . * * * - Multimedia Computing and Networking 2004, Proceedings of S P I E (International Society
for Optical Engine) California, 2004

Metode de stocare şi acces multi-dimensional pentru
date multimedia

Rezumat

Majoritatea datelor multimedia trebuie văzute din mai multe puncte de vedere, de exemplu cele trei
coordonate x, y, z, şi componenta timp. Aceste date n-dimensionale necesită tehnici speciale de acces si
indexare. Desigur că se pot face căutări multi-atribut, dar nevoia de performanţă impune indecşi multi-
dimensionali cum ar fi arbori k-d, structuri trie multi-dimensionale, fişiere grid, arbori point quad, arbori
MX quad, arbori R, tabele de dispersie multi-cheie şi indecşi inverşi. Tot considerentele de performanţă
sînt acelea care impun gruparea obiectelor înrudite sau similare, atunci cînd sunt stocate pe un suport
extern de informaţie. Regăsirea lor se va face astfel mult mai uşor.

